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Abstract. Despite ongoing research and practical efforts, water losses in water distribution networks remain 
alarmingly high, impacting water quantity and quality. Traditionally, water utilities have employed separate 
approaches using acoustic sensors and hydraulic models to address leaks. However, the integration of these 
methods and their potential for mutual improvement have not been thoroughly studied. This research proposes 
a novel approach to improve leak location accuracy by integrating acoustic sensor data and hydraulic modelling 
within a machine learning framework, using data from an actual use case. Results show that by combining 
selected acoustic statistical data in time and frequency domains, and various hydraulic features from physical 
modelling as inputs, a 94% accuracy in the leak location of leaks above 1 L/s can be achieved. This represents 
a substantial improvement relative to the accuracy achieved by the acoustic methods alone (84%) or by the 
hydraulic modelling data alone (64%). 
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1 Introduction 
Several researchers have processed and analysed acoustic file data to classify leakage incidents in the 
water network using machine learning approach [1], [2], [3]. However, as reviewed by Fan, further 
development should focus on study cases that rely on the actual event and not only in an experimental 
setting [4]. This is substantiated by Bykerk and Valls, who comprehensively review studies analysing 
acoustic information and include a test in a real District Metered Area (DMA) in Sydney without any 
hydraulic modelling analysis [5].    
Only Saqib et al., (2017) proposes an integration between acoustic information and hydraulic 
modelling. They approach this integration by introducing an initial screening of leaks based on 
pressure data generated with EPANET, followed by a simulation of leak vibrations using the acoustic 
sound propagation mathematical model which developed by Brennan et al. [6]. The drawbacks of the 
study is that a theoretical network is modelled, and that no real acoustic data is analysed.  
This is the gap this paper aims to address. In particular, the extent to which the combination of these 
two data sources can improve the overall performance of the leak location method is therefore an 
open question. We propose a novel method that integrates hydraulic modelling-generated data with 
real acoustic sensor information to improve leak location in a real DMA of a WDN in a city in Eastern 
Europe. The framework to make this integration is a data-driven model, specifically an Artificial 
Neural Networks (ANN). 

2 Methods 
This study adopts a systematic and sequential methodology, encompassing three distinct steps: data 
preparation, ANN model building, and experimental setup, described in detail below. 
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2.1  Data Preparation 
This step is intended to prepare the acoustic and hydraulic data for training and applying the ANN 
model. On the acoustic side, four variables are extracted from the noise logger file, namely Mean-
Time Domain, Peak-Time Domain, Peak-Frequency Domain, and Kurtosis-Frequency Domain. 
Conversely, on the hydraulic side, a leakage scenario is simulated at a location where the noise logger 
is deployed, with leak rates ranging from 0.125 to 5 L/s. In this leakage modeling process, several 
variables are taken into consideration, including pressure and velocity. 

 
2.2  ANN Model Building for Predicting Leak Occurrence 
The second phase of the methodology consist of the construction of the ANN for the purpose of 
predicting leak occurrence based on binary classification (leak/no leak). Selected acoustic and 
hydraulic properties are the set of independent variables from which the target (output's dependent 
variable) is the leak / no leak condition.  
The dataset preparation process is automated using Python scripting language in conjunction with 
various packages, including NumPy, Pandas, SciPy, TensorFlow, Keras, and SciKit Learn. From the 
data ratio perspective, 80% of the data is used as a training set, while the rest is used as a testing set. 
The input layers are formed by sets of acoustic and hydraulic features; two hidden layers are used, 
each consisting of eight nodes, to calculate the relation weight among features. Finally, the output 
layer consists of one layer with a single node. The hidden layers are activated using the rectified linear 
unit (ReLU) activation function, and the output is activated using a sigmoid function. Since the 
leakage determination is a binary classification problem, the Binary Cross Entropy method was used 
as the loss function. Adam’s optimiser [7] was employed to optimise the forward and backpropagation 
to reduce error. 

 

2.3  Experimental Setup 
The final phase of this research involves training and evaluating the performance and applicability of 
the ANN in accurately classifying leak and non-leak incidents within WDNs, utilizing various feature 
inputs as presented in Table 1. In each experiment, different sets of acoustic and hydraulic attributes 
(and their combinations) are used. Note that the hydraulic attributes include the incremental variation 
of leak rate. 

Table 1. Experiments using Different Input Data Features for ANN Leakage Classification 

Experiment ID 
Input Attribute Output 

Attribute Acoustic  
Data Input 

Hydraulic  
Data Input 

Combined  
Data Input 

A - 1 
Mean – TD 
Peak – TD 
Kurtosis – FD 

Pressure at leak 

Mean – TD 
Peak – TD 
Kurtosis – FD 
Pressure at leak 

Leak /  
no leak  

A – 2 
Mean – TD  
Peak – TD 
Kurtosis – FD 

Delta pressure at leak 

Mean – TD 
Peak – TD 
Kurtosis – FD 
Delta pressure at leak 

Leak /  
no leak 

A – 3  
Mean – TD  
Peak – TD 
Kurtosis – FD 

Pressure at leak 
Delta pressure at leak  

Mean – TD 
Peak – TD 
Kurtosis – FD 
Pressure at leak 
Delta pressure at leak 

Leak /  
no leak 

A – 4 
Mean – TD  
Peak – TD  
Kurtosis – FD 

Pressure at leak 
Delta pressure at leak 
Upstream velocity  
Downstream velocity 

Mean – TD 
Peak – TD 
Kurtosis – FD 
Pressure at leak 
Delta pressure at leak 
Upstream velocity 
Downstream velocity 

Leak /  
no leak 
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B – 1 
Mean – TD 
Peak – FD  
Kurtosis – FD 

Pressure at leak 

Mean – TD 
Peak – FD 
Kurtosis – FD 
Pressure at leak 

Leak /  
no leak 

B – 2  
Mean – TD 
Peak – FD 
Kurtosis – FD 

Delta pressure at leak 

Mean – TD 
Peak – FD 
Kurtosis – FD 
Delta pressure at leak 

Leak /  
no leak 

B – 3  
Mean – TD 
Peak – FD 
Kurtosis – FD 

Pressure at leak 
Delta pressure at leak  

Mean – TD 
Peak – FD 
Kurtosis – FD 
Pressure at leak 
Delta pressure at leak 

Leak /  
no leak 

B - 4 
Mean – TD 
Peak – FD 
Kurtosis – FD 

Pressure at leak 
Delta pressure at leak 
Upstream velocity 
Downstream velocity 

Mean – TD 
Peak – FD 
Kurtosis – FD 
Pressure at leak  
Delta pressure at leak 
Upstream velocity 
Downstream velocity 

Leak /  
no leak 

3 Results 
3.1 Features Selection 
On the acoustic data input, four variables have been explored: Mean–TD, Peak–TD, Peak–FD, and Kurtosis–
FD. Previous research has shown that these variables strongly relate to a leak signal in WDN [3], [4], [8]. 
While on the hydraulic data input, pressure, delta pressure, and velocity have been selected.  Table 2 provides 
a detailed overview of the multicollinearity analysis of input features in experiments using the Variance 
Influence Factors (VIF). It is observed that employing these features individually leads to a substantial 
reduction in the value of VIF, signifying a decreased level of dependency. 

Table 2. Multicollinearity Analysis of Input Features in Experiments using VIF 

In
pu

t V
ar

ia
bl

es
 F

ea
tu

re
  Experiment ID 

A-1 A-2 A-3 A-4 B-1 B-2 B-3 B-4 
Mean -TD 1.03 1.02 1.04 1.04 1.03 1.00 1.04 1.04 
Peak -TD 1.67 1.50 1.85 2.10 - - - - 
Peak – FD - - - - 1.23 1.12 1.25 1.37 

Kurtosis – FD 1.15 1.14 1.15 1.26 1.08 1.11 1.11 1.24 
Pressure wo Leak - - - - - - - - 
Pressure w leak 1.51 - 1.61 2.3 1.19 - 1.40 2.21 
Delta Pressure - 1.36 1.45 2.4 - 1.13 1.33 2.41 

Velocity Upstream - - - 3.08 - - - 3.13 
Velocity Downstream - - - 2.02 - - - 1.91 

 
3.2 ANN Performance for Different Input Features  
ANN models were trained and tested using the inputs in Table 1 as independent variables and the 
output leak / no leak as the dependent variable. The confusion matrix summary as seen in Figure 1 
shows that the use of different feature sets and their impact on the model's performance underscored 
the importance of feature selection and representation in achieving accurate classification results. 
Based on the experiment result, it can be conluded that a combination of acoustic features including 
Mean-Time Domain (Mean-TD), Peak-Time Domain (Peak-TD), and Kurtosis-Frequency Domain 
(Kurtosis-FD) is considered alongside hydraulic features such as pressure at leak and delta pressure 
at leak gives better performance compared to others input combinations.  
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Figure 1. Summary of the confusion matrices from all experiments with combined input   

 

4 Conclusion 
In conclusion, our analysis of the confusion matrix from multiple experiments revealed variations in the 
model's performance across different conditions. The consistent TP and TN values across similar experiments 
indicated stability in the model's classification ability, while discrepancies in FP and FN values highlighted 
areas where the model could benefit from further improvement. The use of different feature sets and their 
impact on the model's performance underscored the importance of feature selection and representation in 
achieving accurate classification results.  
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